
Kioptrix Level 1 - Exploitation and
Vulnerability Analysis
Written by Adam Martinez

Overview
In this report, we will detail the findings of an exploitation analysis and security
assessment of a vulnerable machine, Kioptrix. For the attack box, we will use a
virtualized instance of Kali Linux. Both the Kali Linux and Kioptrix instances are
virtualized using VirtualBox.

For this review, both machines are running on the same local network.

Discovery and Enumeration
To begin, we will perform a cursory scan of our network to isolate our target. We
will use netdiscover to find devices on the network.

Among the typical devices in our network, we can isolate the address of our target.

Using the target address, we can use nmap to discover any open ports, revealing
possible attack vectors.



Starting from the top, we can see that a port is open on port 22, SSH. We can try
and connect to the target with the ssh command, but we are not able to access it
without a password for now (anonymous access prevented).

Moving on, the open ports 80 and 443 implies a web server is being hosted at this
address. Let’s visit the address using our browser.



We can see the server uses Red-Hat Linux. Clicking the DocumentRoot or
documentation links generates a 404 Not Found error, disclosing the Apache
version and hostname, which we also found in our nmap scan.

We can use a directory-buster tool to discover any interesting pages on this server.
In this case we will use dirbuster. We will use the dirbuster_small_wordlist which
comes pre-installed with Kali.

After allowing the tool to run for a while, we discover a large amount of hidden
pages, mostly manuals about the server’s technology stack. Informative, but not



particularly useful to us. Inspection of the page’s source code yields no useful
information.

We can see that SMB is open on port 139. Using the smbclient with the -L flag, we
can find potentially vulnerable workgroups. Running the command we find the
IPC$ and ADMIN$ shares.

ADMIN$ does not allow anonymous access but IPC$ does. We can access the
IPC$ share, but we do not have the permission to execute any further commands
for now.

We can also enumerate RPC using rpcinfo. Providing the host address, we find the
following services.

Finally, we can conclude our information-gathering with a nikto scan.



We can see many vulnerabilities. Noticeably, the web server is using outdated
services like mod_ssl 2.8.4 and Apache 1.3.20.

Exploitation
To review, we found we have remote anonymous access to the IPC$ file share with
SMB. Additionally, we have some outdated technology on the web server.

SMB Exploitation
The target is running Samba, let’s see if we can find out any more information
about this SMB instance.

Opening metasploit (msfconsole) we can look for auxiliary scans related to SMB,
in order to find out what version of Samba the target is using for further
exploitation.

Searching for “smb” in the console, we find the
“auxiliary/scanner/smb/smb_version” module. In running this module against our
target, we discover the Samba version is 2.2.1a.



Let’s perform another search and look for any exploits on this Samba version.
After a bit of searching we found an exploit that looks promising, called
trans2open.

We know the target is running Linux, so we’ll use the highlighted module.

When we run the module against the target with the default payload, nothing
happens. We can experiment with other relevant payloads:



Using this payload, we gain root on the target machine.

Outdated MOD_SSL
We’ll use searchsploit to find vulnerabilities for mod_ssl version 2.8.4

To leverage the exploit, we’ll have to run it manually. We could copy the code
from our local exploitdb repository, however this version seems to be outdated for
our purposes. We will use an updated version called “OpenLuck” by cloning its Git
repository and compiling the OpenFuck.c file. Following the instructions in the
README, we compile and run the script.



Running the script with no parameters, we get a list of exploitable operating
systems. From our reconnaissance, we know the target system is using Red-Hat
Linux running Apache 1.3.20. Looking down the list, this gives us two options for
targets: 0x6a and 0x6b.

We can try 0x6a and see that it doesn't work. We’ll try 0x6b next.



This target grants us root access.

Conclusion
We were able to exploit an outdated SMB protocol to gain root. Additionally, we
leveraged an exploit to gain root through a misconfigured Apache server.


